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ON ASYMPTOTIC STOPPING IN THE PRESENCE OF VISCOUS FRICTION* 

I. TERRKI and L. KHATVANI 

Using Liapunov's second method sufficient conditions are given for asymptotic stop- 
ping in stationary and nonstationary mechanical systems with potential forcesinthe 
presence of viscous friction with total dissipation. The results are illustratedby 
example of a material point moving under the action of gravity over a movingsurface, 
as well as by example of a symmetric gyroscope in a gimbal suspension. By defini- 
tion a mechanical system is asymptotically stopped if with the passing of time the 
generalized coordinates tend to constants and the generalized velocities tend to 
zero /l-55/. It turned out /6/ that under very general conditions nonstationary 
mechanical systems are asymptotically stopped in a neighborhood of a stable equili- 
brium position under the action of dry friction. It is shown below that in the 
general case viscous friction now does not cause this phenomenon, and sufficientcon- 
ditions are given for asymptotic stopping. 

1. We consider a holonomic mechanical system with time-dependent constraints, described 
by the Lagrange equation 

d aI, -- 
tit 64 

-g-Q (1.1) 

Q = (Qw ., - q,)T E I?*, I( (I /I = (q12 + . . . -; qnyl/ 
L = L, + I,, $~ L,,, L, = ‘i? (q’)TA (h 4)q. 
L, = iI (f, q)Tq’, L” =: L, (f, q) 

A. H, L, have continuous partial derivatives on the set 

rrl = {(t, 4% 9') : t E R, = LO, m), /14ll<H<~oo, 4’EW 

Dissipative and gyroscopic forces whose resultant is denoted Q =Q(t, q, q’) act on the system; 
hence, QTq' 6 0. We assume that system (1.1) admits of the equilibrium position q= q’-0. By 
h' we denote the class of continuous strictly increasing functions o:R+-+ It, for which o(O)= 0. 
In /6/ it was shown that if L, (t.0) z 0, L, (t,q) GO, aL(t,q)/ at>,0 and a function o E K exists such 
that the inequality 

Or (t> 9. 9') Y‘ ~ (0 (I y ii) jlq' 11 (t t H+, 4' t fg", /I y (1 -: II’ < II) (1.2) 

is fulfilled, then the equilibrium position Q = 'I'= 0 is stable and any motion for which 

II 4 (0 I: \c H’ for t> td has a finite limit as t-co. Condition (1.2) can be satisfied by dry fric- 
tion forces /6/ for which, thus, it is typical that the motions asymptotically approach oneof 
the equilibrium positions under specific conditions. Viscous friction forces, i.e., friction 
forces proportional to the velocity, do not satisfy condition (1.2); of them we can require 
the fulfillment of the estimate QTy.Q- o(/\yII)l!y'I:' (the dissipation is total). 

It happensthat a mechanical system exists satisfying the conditions listed above (except- 
ing condition (1.2)), which, under the action of a viscous friction force with total dissipa- 
tion, has a motion not having a limit as t +oc and has a nonstable equilibrium position. An 
example of such a system is a material point moving under the action of gravity over a surface 
z = f (r, cp), where f (r, (c) = 0 (r-< 1) and f (F, (p) > 0 (I. > I), and is found under the action of a vis- 
cous friction force with total dissipation. (Here r,cp,z,are cylindrical coordinates, the Z - 
axis is directed opposite to the force of gravity). It is sufficient to show that thereexists 
a function f such that the constraint-z = f(r, cp)admits of the motion(r(t),cp(t),z(f)) for which 
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r (4 I 1, cp 0) f M, z (tj L 0, f.7 @f +-0 0 -+=J) (1.3) 

where v(2)is the magnitude of the velocity at instant t. Then the points ofthe circler = 1, 
z = 0 are unstable equilibrium positions; moreover, the motions with conditions (1.3) do not 
have a finite limit as t +m. We consider an arbitrary curve (F(s),~(s),~(s)) in r,rp,z -space, 
having the following property:r(s)\.i, 4'6) ,'=, z(r) '$0 (s - m), moreover, (6 (s) - PJ/ (r(s) - 1) - 0 and 

P (d - 1 as s-.~, where B(s) is the unit vector of the binormal to the curve, e, is the unit 
vector of the 2 -axis and p(s)is the radius of curvature. Let the material point move along 
this curve as a constraint with a zero initial velocity under gravity in the presence of vis- 
cous friction. Simple mechanical consideration shows that the motion indicated satisfies con- 
dition (1.3). It remains to find the surface z=f with the properties mentioned, which, as 
a constraint, admits of this motion. The problem of constructing such a surface is the fol- 
lowing. Suppose that along the curve (r(s),V() s,z(S)) we are given a sufficiently smooth vector- 
valued function 5(s). We need to find a surface passing through the given curve, such that for 
all values of parameter s the normal to the surface at point (r(s),rp(s), Z(S)) contains thevector 
I (s). The existence of such a surface can be shown by differential-geometric methods. 

2. Let us coniser the conditions ensuring the existence of a limit for the generalized 
coordinates in the presence of viscous friction. For the stationary case it was proved in /3/ 
that if potential forces do not act and the dissipation is total, then the equilibrium posi- 
tion is stable and the system can be asymptotically stopped. We generalize this result to 
non-stationary systems under the action of potential forces sufficiently small along the mo- 
tions. 

LeTIMla. Assume that the functions f:R+ -+R+,g: R+ + fin are continuously differentiable, 
the function w:R+->R+ is summable on H,, while o: R, +R, is continuous, nondecreasing and 
w (r) > 0 for r> 0. We introduce the notation 

If 
d&f ft) Q -03 ( II g 0) II) II g’ (4 II t- w (t) (t 65 R+) 

then for any k (1 <k-G n) 
bounded from above by the 

the total variation of function a( /gh_ 1) on the interval ti', t"1 is 
quantity 

I” 

f(f) .- f (t”) + s I” dt (0 < t’ < t”) 
1’ 

and the function gk (t) has 

Proof. The function 
its total variation is 

t* 

a finite limit as t-too 

Q(/gr(t)I) is absolutely continuous on each interval ft’,f”l, therefore, 

Hence follows the lemma's first assertion. Since fitf>,o and function w is summable on R+, 
then according to the lemma's first assertion Sa(\n~1) is a function of bounded variation onR+, 
consequently, it has a finite limit as t-rm. Then from the condition SZ(~)+CO (t+m)itfollows 
that the function ~&(t)jis bounded on R+. If the limit as t--m were not to hold, then the 
fUriCtd.On Q(i gkft)l) too would not have a limit because Q(r) is a strictly increasing function. 
This leads to a contradiction. 

Theorem 1. For system (1.1) assume that the following conditions 

li a 11 q’112 < (q’)T A (t, q) q’ -< fi it q’i? (0 < a, i = const) 
2) (q’)T (8A (t, q) / at) q’ 27 - WI (t) II fll z 

are satisfied on set rp' = {(t, 11, 4'): t E R,, II 411 < H’, q* E RR} (0 < H’ < H), where the func- 
tion ml(t) is nonnegative and summable on R ; 

3) function 20, (t) = sup {II dB (6 9) / f3t - a~$ (t. q) IaqII: 11 911 <,‘H’} is summable on R,; 
4) dissipation is total, i.e., 

QT (t, q, q+)q’ Q - Y II q’ 11’ (0 < v = const) (2.1) 
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Then the equilibrium position g = 9' = 0 is stable, is asymptotically g'-stable, and, for suf- 
ficiently small initial values of function g(t), has a finite limit as t --tm. 

Proof. It is well known /5i that 

+ CL2 _L,)--++Tq* (2.2) 

Consider the Liapunov function V = 2 (L,)'k On the strength of identity (2.2) and conditions 
l)-4) we have the estimate 

whence by conditions we obtain the inequality 

(2.3) 

First of all let us show that for any F > 0, t, >i Owe can find a function 'l(s, to) > 0 such that 
from the condition 

II Q (to) lie + 11 4' (GJ /I1 < 71 (2.5) 

follows I/ 9' (t) 11 < a in the interval t E ito, M), where the inequality 11 q(t)119 H’ (t,<M-‘CO) is 
fulfilled. Let,the motion Q = (1(t)(1lq(t,)II <H') be given. We consider the function v (1) =; 
v (2% 4 (& Q' (0). Integrating (2.4) alongthemotion, we obtain the estimate 

u(t)<!c(T)+c1 &&)U(S)dS (&l<~<,J<X), ~(2')=n(T)--c*i-Q y . (s)ds 
T 

According to Bellman's lemma /7/ it follows that L'(i) <c&(T)for tE[T,;W). Function IQ is 
summable, therefore, there exist T(e), p(e)> 0 such that if T (E)< l?'I and v (T (E)) < p (E), then 
l)(l) (s(2c)'~ when 2 E [T(e),M). The motions depend on the initial data continuously, therefore, 
by virtue of condition 1) there exists n (s, to)>0 such that v(t) <~~(Efontheinterval[t,,T(~)j 
when condition (2.5) is fulfilled. Then v (t) < E (2a)'ja when t E [to, n/r). Hence follows the in- 
equality II 9' (1) II < F. 

Let us now prove that M = m for sufficiently smallll n(to)il" t I/ 4’ (to) //‘I, the equilibrium 
position is q'stable and $J (f) has a finite limit as t+oo. Let Y to< Y<ll’) and t, S fl+ be 
given. Assume that 

II Y w II2 -i- II Q’ (to) IV < q (1, to) (2.6) 

Then by virtue of (2.31 

V' 0) < - c* II q’ (t) II + ID (1) (trJ -8 t< Jff; 0 < c, = const) (2.7) 

where function wis summable on I<+. By condition 1) there exist6,, T(O<S,(y/(Zn), t, < Z’< 
kf) such that from (1 qojl < H’, 11 qo’II < b, follows 

The solutions depend continuously in the initial data, therefore, 6 =s ('VP to) exists such that 
when jl p (13 112 + jj 9' (to)//' c 6" the inequality 11 q (t) I/’ -i- jl 9’ (t) 11” < S* is satisfied on interval it,, Tl. 
Then Ii q @)/I < Y for t E [tBt M). In the opposite case there exist numbers t",ii (T< t"(M;$. $ 

k < n) such that j qk (t”) 1 = y / II.. On the other hand, by the lemma it follows from inequality 
(2.7) that the total variation of function 1 qk 1 is bounded from above by the quantity 

but this contradicts i4k (T) I< y /(212) and [qk (tn) i = yin. Consequently, )I4 (1) II< Y< II' for 
1 E [lo, M). From the definition of ,21 it follows that ii/I = 00, i.e., the equilibrium position 
is stable. Applying the lemma, from (2.7) we get that under sufficiently small initial values 
the function q(t) has a finite limit as t -+w. 



Asymptotic stopping in the presence of friction 

It remains to prove that the equilibrium position is asymptotically 
consequence of (2.71, along the motion we have v'(t)< w(t) when condition 
Thus, the nonnegative function 

v(t) + f W(S)& 
* 

does not grow, consequently, it has a finite limit as t --fw. Since 

&ds*O 
f 
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4'-stable. As a 
(2.6) is fulfilled. 

as t+oo, we get thatv(t)+v* >Oas t-+m . In case v* > 0 , from (2.7) it would follow 
that 

v' (t) < -W*@1/2B) + w (Q 

l.e.,v(t)-+--w as t +m, but this is impossible. Therefore, v* = 0. But then, by virtue of 
l), 11 q'(t)11 +O as t +CCJ. The theorem is proved. 

We illustrate this result by the following problem. Let a material point move under the 
gravity force (O,O,- ng) in a three-dimensional (x~I/.z) -space over a moving surface2 = --h(t) (s*-t- 
u') (h (t) > 0, h' (t) -< 0, h" (t) > 0) as a constraint in the presence of viscous friction with total 
dissipation. If h(t) =const>O, then the equilibrium position r 5 u= 0 is unstable, while if 
h (t) 5% 0 , it is stable. The question arises on how rapidly the function h.(t) should decrease 
in order that the equilibrium position z= Y = 0 be stable and the material point be asymptot- 
ically stopped. An application of Theorem 1 verifes that the condition 

5 
A (s)ds < C0 

" 

is sufficient (for example, h(f)= 1'(1 +t2)). 

Note. By analyzing the proof of Theorem 1 we can see that if the theorem's conditions 
are fulfilled on set Ts instead of setr*'. then the equilibrium position is stable,is asymptot- 
ically q'-stable in-the-large and, for any motion, the function q(t) has a finite limit as 
t-rm. On the other hand, if instead of condition (2.1) we require the fulfillment of an in- 
equality of more general type QT(t, 41,q')<--o(l/ q1/)/1q’Ir with function WE K (see condition (1.2) 
in the dry friction case), then the theorem's assertions remain valid, excludingtheasymptotic 

q'-stability. However, also in this case ii~‘(tH -CO (t-m) if the limit of function (jq(t)li 
is nonzero. 

3. Let us consider stationary mechanical systems under potential, gyroscopic and dissip- 
ative forces with total dissipation. Assume that the potential forces act only in certain 
given directions, i.e., the potential energy depends only on a certain part of the variables, 
but the equilibrium positions in the subspace of these variables are isolated. The equation 
of motion has the form (T is the kinetic energy, Pis the potential energy) 

d LiT dT ----=__ 
dt aq’ e ; + Q> l'='/z(q')TA(q)q' (3.1) 

Theorenl 2. Assume that: 
1) a 

P 
artitioning 

k + m = n 
q = (q’, q2)T of the generalized coordinates (9'S Rk, qZ~R”‘; O.<k.< n, 

exists such that 8Pii3q2 = 0; 
2) the solution of the equation aPl8q’ = 0 are isolated points; 
3) the partitioning of the matrix A into blocks, corresponding to the partitioning 

q = (41, q2)T, has the form A = diag (A’, AZ} (A 1 is a k X k-matrix, AZ is an m X m -matrix) ; 
4) the dissipation is total, more precisely, there exist YIN VZ>O such that 

(Q')T 62)' Q - ~1 II (q’)’ II”v (QYT (q?)' -< - vz II (q')q1* 

Then along each of its bounded motions (q(t), q'(t)) th e system asymptotically approaches one of 
its equilibrium positions, i .e ., q(t)+c,,nst and 9’ (4 -+0 as t-+m. 



20 I. Tereki and L. Khatvani 

Proof. Since the motion is bounded, there exists c> 0 such that P (q (t)) ;> c. Then 
along the motions the total energy V = T .+ P-c is positive definite relative to q' and 

V’ (q, q’) = <F (q, q’) q’ -c; - 17 11 q’ II1 (y = min (VI7 YJ) (3.2) 

By the invariance principle /8/, from estimate (3.2) it follows that 4'(t) -to and q(/) tends to 

a connected set EC R” consisting of the equilibrium positions. Therefore, on the strength 
of conditions 1) and 2) we get that q’(t) + const as t *cm. 

It remains to prove the existence of the limit of function 4'(t). The motion r (t) m-y 4' (t), 

r' (t) = (4’)’ (t) is, obviously, a solution of the nonstationary Lagrange equation 

d dJ.* dJ.* 

dtdr.--= dr v* (3.3) 

L* = L* (t. r, r') = L,* (t, r, r’) + Lo* (t, r) 

L,* = ‘1, (r’)T A2 (q’ (t), r) r’ 

Lo* = vp ((I’)’ (t)T A’ (q’ (t), r) (41)’ (t) 
Q* = Q* (t, r, r’) = Q” (9’ (t), r, (q’)’ (t), r’) 

The function V* = 2 (L,*)‘/: is positive definite and admits of an infinitesimalupperlimit 

relative to r'. Let us estimate the derivative of functionV*relative to system (3.3). Apply- 

ing identity (2.2), we obtain the formula 

Functions q (t), and 4' (t) are bounded, therefore, 

G*);Kc CL3 4’ (1), (q’)’ (4) -< a1 II W)’ (4 II2 II W)’ @) II + 
a2 II (4’)’ (t) II’ II (q’)’ (t) II - 75 II (4*). (t) II2 (aI, a2 = const) 

On the other hand, from (3.2) it follows that 

(3.4) 

(3.5) 

Using the inequality 

a3 II r’ II* .< L,* (t, r, r’) < a, 11 r’ \I1 (0 < CC~, a4 = const) 

from (3.4) and (3.5) we obtain the estimate 

(V*),.,, 0, 4' (& (42)' 0)) < - v3 II (q? (t) II + UJ (4 (Y.3 = Y2 ’ I/a,) 

where the function wis summable on R,. According to this estimate, the existence of the 

limit of function q2(t) follows from the lemma's second assertion. We note that the assertion 

of Theorem 2 is valid for all bounded motions (q(t), q’(t)) with arbitrary initial data. 

4. Let us consider the motion of a symmetric gyroscope in a gimbal suspension, with due 

regard to the masses of the suspension rings /9/. We assume that the fixed rotation axis of 

the outer ring of the gimbal suspension is vertical and the rotation axis of the inner ring is 

horizontal, and that the centers of gravity of the gyroscope and of the inner ring are located 

on the gyroscope's axis of symmetry. The position of this system can be determined by three 

Euler angles: the nutation angle 8,the precession angle $, and the gyroscope's natural rota- 

tion angle qp . We assume that friction forces as well act on the gyroscope besides the force 

of gravity. Sufficient asymptotic stability condition were given in /9/ for the vertical rota- 

tion e = t3'= 0, $'= const,~ = const in the presence of any friction with total dissipation. Having 

studied the influence of dry friction forces, in /6/ the authors proved that if these forces 

act only in the suspension's axes (see /10/J, then each motion asymptotically approaches one 

of the permanent rotations 8 = con%, 8' = +' = 0, rp' = const. Let us now consider the case of viscous 

friction, assuming henceforth that the moment of the friction forces relative to the gyroscopes 

proper axis is zero. After ignoring the cyclic coordinates, we write the equations of motion 

as 
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(4.1) 

Here R is the Routh function, Q,, andQ, are friction force moments relativetothesuspension 
axes, r0 is a cyclic constant. Applying Theorem 2 to system (4.1) (where gl=e,g*=+)andusing 
the cyclic integral, we obtain the following result. If viscous friction forces act on the 
gyroscope, whose moments satisfy the inequalities 

Q1 (e, $, 8'. 9') 8.9 -~~e'z 
Qr (e, rl,, 0'. qJ')$'< - y,q.e (O<y,v Ys = cow 

then under initial conditions for which r,=O we have e(t)-0 or 8 (t)-=, up (t)- 00nst, 8' (t), $. (t), 

cp' (0 - 0 as t-m,i.e., each motion asymptotically approaches one of the two equilibrium posi- 
tions e = 0 (e = n), 8. = q. =‘p* = 0. 
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